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Dust reprocessing, n(r) ~ 1/r  (Rowan-Robinson 1995) 
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The Scientific Method 

It is a capital mistake to theorize before one has 
the data. Insensibly, one begins to twist facts to 
suit  theories, instead of theories to suit facts. 
     Sir Arthur Conan Doyle 

It is also a good rule not  to put too much 
confidence in experimental results, until they have 
been confirmed by theory. 
     Sir Arthur Eddington 

First you get your facts; then you can distort them 
at your leisure.  
     Mark Twain 
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Some Facts 
  AGN are multiscale, multifrequency objects. Need to 
understand their structure over large number of decades in r 

 Use Unification arguments to obtain their structure from 
objects at high inclination angle (IR – Torii).  

 Structure along LOS can be probed efficiently by X-ray 
spectroscopy! X-ray absorption features are ubiquitous in the 
spectra of AGN, GBHC (50% of all AGN exhibit UV and X-ray 
absorption). They span a factor of ~105 in ionization 
parameter indicating the presence of ions ranging from highly 
ionized (H-He - like Fe) to neutral, all in 1.5 decades in X-ray 
energy!  

 These “live” in very different regions of ionization parameter 
space and likely in different regions of real space.  
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  Use X-ray spectroscopy to probe the molecular torii 
and the intervening region. 

 Molecular torii are impossible objects: They have H/R ~1 
implying random velocities comparable to their Keplerian 
ones (300 – 500 km/s). 

 However, with temperatures T ~10-100 K, Vth <~ 1 km/s!! 

 They cannot be static objects  Winds.  
 At their distances (~ pc)  the radiation field has very 
little momentum; Therefore 

  Magnetically-Driven Accretion-Disk Winds! (Konigl-
Kartje 1994).   
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BAL QSO: X-ray Absorptions 

X-ray Absorption line (Fe XXV) Spectral index vs. wind velocity 

Brandt+(09); Chartas+(09) 

Chandra/XMM/Suzaku 

Effect of ionizing spectrum(!?) 
Fe resonance transitions 

X-ray absorber 
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Galactic Black Hole (GBH) Binaries 
•  High ionization: log(ξ[erg cm s-1]) ~ 4.5 - 5.4 
•  Small radii: log (r[cm]) ~ 9.0 - 9.4 
•  High density: log(n[cm-3]) ~ 14 

Chandra Data 
Miller+(08) 

•  M(BH)~7Msun 
•  M(2nd)~2.3Msun 

NASA/CXC/A.Hobart 

Miller+(06) 
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 Seyfert and Radio Galaxies 

  Slow ~ 100 km/sec @ low-ξ 
  High ~ 1,900 km/sec @ high-ξ	


  Integrated NH ~ 5.3 x 1021 cm-2 

Holczer+(10) 

(see also Otani+96, Reynolds+97,  
               Sako+03, Miller+08)  

Chandra/HETGS 

slow fast 
(HETGS) (RGS) 

slow fast 

“Warm Absorber” 



Boroson 2002 
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Our thesis (and hope) is that these diverse data (including  
those of galactic X-ray sources)  can be  systematized to 
include the blazar phenomenology  with a small number of 
parameters (2)  



Flows (accretion or winds) and their ionization 
structure are invariant (independent of the mass of 
gravitating object;ADAF) if: 

1.  Mass flux is expressed in terms of Eddington mass 
flux  

2.  The radius in terms of the Schwarzschild radius 

3.  The velocities are Keplerian 
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X-ray-Bright AGNs 

Chandra data 
Holczer+(07) 11 
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PG 1211+143 

Pounds+Reeves(09) 

PDS 456 

Reeves+(09) 

  “Narrow” Hβ line < 2,000 km/sec 
  Weak O III/Hβ ratio 
  Strong “Soft X-ray Excess” 
  Highly-blueshifted absorption lines  

PG 0844+349 

Pounds+(03) 

(v/c ~ 0.2) 

(v/c ~ 0.25) 

(v/c ~ 0.1) 

Chandra/XMM-Newton data 



Credit: NASA/CXC/PSU/M.Weiss/G.Chartas 
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Broad Absorption Line (BAL) QSOs: 
APM 08279+5255 

z =  3.91 

  ~10% of optically-selected QSOs 
  Faint X-ray relative to O/(F)UV continua 
  Broad C IV line ~ 2,000-30,000 km/sec 
  Highly-blueshifted ~ 10,000-30,000 km/sec  

NRAO/AUI/NSF,STScI 
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BAL QSO: UV Apsorptions 

Ellison+(99) 

λ7295 

λ7305 

UV C IV doublet 

Srianand+Petitjean(00) 
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Holczer+(07) 

ionization 

Behar(09) 

AMD(ξ) = dNH / dlogξ ~ (logξ)p 

column 

column 

ionization 

(5 AGNs) 

 presence of nearly equal NH over ~4 decades in ξ (p~0.02) 

where ξ = L/(n r2) 

(0.02 < p < 0.29) 



For radiatively driven winds                         one obtains                                               
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Fundamental Questions: 

  Geometry? 
  Spatial location? 
  Properties? 
  Physical origin? 
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  Accretion disks necessarily produce outflows/winds 
    (launched initially with Keplerian rotation) 
  Driven by some acceleration mechanism(s) 
  Local X-rays heat up and photoionize plasma along the way 

 Need to consider mutual interactions between ions & radiation                                                                                                  

To AMD through MHD Winds 
Blandford+Payne(82) 
Contopoulos+Lovelace(94) 
Konigl+Kartje(94) 
Contopoulos(95) 
Murray+(95;98) 
Blandford+Begelman(99) 
Proga+Kallman(04) 
Everett(05) 
Schurch+Done(07,08) 
Sim+(08;10) 
                    & more… Konigl+Kartje(94) 

accelerated 



Magnetically-Driven Outflows 
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Magnetohydrodynamics (MHD)  

(At least) 2 candidates: 

  GRO J1655-40 
     Miller+(06,08) 

  NGC 4151 
     Kraemer+(05) 
     Crenshaw+Kraemer(07) 
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MHD Disk-Wind Solutions 

  Steady-state, axisymmetric MHD solutions (2.5D): 

 5 “conserved” quantities: Energy, Ang.Mom., Flux, Ent., Rot. 

(Blandford+Payne82; Contopoulos+Lovelace94) 

(Prad=0) 

  Look for solutions that the variables separate 



Assume Power Law radial dependence for all variables 
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  Solve for their angular dependence using the force 
balance equation in the θ-direction (Grad-Safranov 
equation). 
 This is a wind-type equation that has to pass through 
the appropriate critical points. 
 BP82 solution: s = 3/2 ; CL94 solution: s =1    



•  With the above scalings 

•  In order that n(r)~1/r, s = 1 and 

•  The mass flux in the wind increases with distance!! Or 
rather, most of the accreting gas “peels-off” to  allow only a 
small fraction to accrete onto the black hole (Blandford & 
Begelman 1999). 

•  There is mounting observational evidence that the mass flux 
in the wind is much higher than that needed to power the 
AGN/LMXRB. 

•  Feedback! Edot ~ mdot v2 ~r-1/2 ; Momentum input: 
Pdot ~ mdot v ~ logr  Equal momentum per 
decade of radius!  
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•  By expressing BH luminosity in terms of 
dimensionless variables (                or              ) the 
ionization parameter can now be expressed in the 
dimensionless variables 

•  For s=1, ξ(r) ~ 1/r ; species “living” in lower    ξ-
space should come from larger distances. 

•  The radiation seen by gas at larger distances 
requires radiative transfer thru the wind. 
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We seek “q=1” self-similar wind: 

  B(r,θ) ~ B(θ)/r  

  n(r,θ) ~ F(θ)/r (i.e. equal column per decade in radius) 

  LoS velocity ~ 1/r1/2  (Keplerian profile) 

  ξ(r,θ) ~ G(θ)/r (w/o attenuation) 

x = r/rs 

(c.f. Ueda+03; Tueller+08) 

(Contopoulos+Lovelace94) 
MHD Disk-Wind Solutions 



The density has a very steep θ-dependence with the 
polar column being 103 – 104 smaller than the 
equatorial. The wind IS the unification torus (Konigl 
& Kartje 1994).  

020406080 4 3 2 10Density log[N (θ)]LOS Angle θ (deg)Alfven Point(a)
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MHD Wind Angular Density  Profile  

T. Fischer + 
(2011) 

e (θ-π/2)/0.2 
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Simple Wind Solutions with n~1/r 

Density 

Launch  
site 

Assume: 
M(BH) = 106 Msun, Γ ~ 2 (single power-law),  LX ~ 1042 erg/s,   
mdot ~ 0.5,  rad. eff. ~ 10%,  n(in) ~ 1010 cm-3 

(Fukumura+10a) 

Poloidal 
velocity 

Toroidal 
velocity 

[cm-3] 

(q=1) 
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The photon density at the gamma-ray blob can be 
calculated by integrating the source function along rays 

Dust  sublimation radius  
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D 



For sufficiently small values of mdot the magnetic 
energy dominates over the photon energy, depending 
on the bulk acceleration of the jet relative to the 
size of the disk. 

This simple MHD-wind based model provides a direct 
account of the BL Lac – FSRQ phenomenology.  

10/28/2010 SEAL@GSFC 30 

4 



Line emission reflects 
also on the accretion / 
wind mass flux rate 
and  should relate to 
the character of the 
objects (P. Padovani’s 
talk) 
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Dust reprocessing: For n(r)~1/r, equal energy per 
decade of radius is absorbed and emitted as dust IR 
emission at progressively decreasing temperature. 
This leads to a flat nuFnu IR spectrum  

10/28/2010 SEAL@GSFC 32 



10/28/2010 SEAL@GSFC 33 

IMHD pulsar solution: BC force a parallel electric field and  
Creation of charges while none is assumed in the outset.   

(Kalapotharakos, Kazanas, Harding, Contopoulos,  1108.2138) 

What about the particle acceleration?  



Conclusions  
•  AGN Unification models that can accommodate their 

X-ray absorber properties provide novel insights 
concerning the Fermi blazar observations:  

•  The ~1/r density profiles implied by the AMD 
provide the possibility of external photons along the 
jet axis either through scattering or reprocessing 
into lines. Both can be calculated once we fix on a 
specific MHD model. 

•  The model suggests that low values of mdot are 
associated with non-thermal emission dominated by 
SSC rather than EC.  

•  The model relates the wind characteristics (e.g. 
outer radius) to the IR properties of AGN, which in 
turn are related to the Compton dominance of the 
object. 10/28/2010 SEAL@GSFC 34 
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Disk Wind 

Gallagher(07) 

BAL QSO  
SED 

See; 
Elvis+(94) 
Richards+(06) 

αox = 0.384 log (f2 keV / f2500 Å) 
 tells you X-ray weakness 
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Apply the model to BAL QSOs by changing only αOX : The decrease in 
ionizing X-rays allow for FeXXV very close to the BH  hi FeXXV 
velocity, absorption of CIV forming photons  CIV forms also at small 
distances leading to hi CIV velocity (but smaller than that of FeXXV).  

  mdot = 0.5 
  kT(in) = 5eV 
  ΓX = 2 
  αOX = -2 

Injected SED (Fν) Log(density) 

Fukumura+(10b) 



AMD 
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  mdot = 0.5 
  kT(in) = 5eV 
  ΓX = 2 
  αOX = -2 

Production of CIV and FeXXV/XXVI  
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Correlations with Outflow Velocity 
Velocity Dependence on SED (X-ray) 

10/28/2010 SEAL@GSFC 
  X-ray data of APM 08279+5255 from Chartas+(09) 
  Model from Fukumura+(10b) 



END 
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Issues (Future Work) 
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Broad Absorption Line (BAL) QSOs 
  Became known with ROSAT/ASCA survey 

  Large C IV EW(absorb) ~ 20-50 A ~ 30,000 km/sec 

  ~10% of optically-selected QSOs 

  Faint (soft) X-ray relative to O/UV continua 

  High-velocity/near-relativistic outflows:  
                  v/c ~ 0.04 - 0.1 (e.g. UV C IV) 
                  v/c ~ 0.1 - 0.8 (e.g. X-ray Fe XXV) 

  High intrinsic column of ~ 1022 cm-2 (UV) 
                                         >~ 1023 cm-2 (X-ray) 
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Lyα  C IV 

10. Normal galaxies vs. BAL quasars 

Mg II Hα Hβ 

Lyα NV 
Si IV 

C IV 

broad absorption lines 
(P Cygni profiles) 

normal BAL 
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Ramirez(08) 
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12. Quasars – SED (UV/X-ray property) 

Chandra BAL QSO survey 
Gallagher+(06) 

UV-bright, X-ray-faint! 
αox = 0.384 log (f2 keV / f2500 Å) 
 tells you X-ray weakness 

2 keV�2500 Å�

Elvis+(94) 
Richards+(06) 
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Side Notes 
MCG 6-30-15  

Crenshaw+03 

Netzer+(03) 
X-ray spectrum of NGC 3783 
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fainter in X-rays�

UV Luminosity vs. αox 

log(Luv) (ergs s
-1 Hz-1)�
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Face-down view (e.g. ~30deg)  
   low NH, low v/c 

Optimal view (e.g. ~50deg) 
   high NH, high v/c 

(ii) Velocity dependence on LoS 
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